Polynomial Time Reduction from Approximate Shortest Vector Problem to Principal Ideal Problem for Lattices in Some Cyclotomic Rings
نویسنده
چکیده
Many cryptographic schemes have been established based on the hardness of lattice problems. For the asymptotic efficiency, ideal lattices in the ring of cyclotomic integers are suggested to be used in most such schemes. On the other hand in computational algebraic number theory one of the main problem is the principal ideal problem (PIP). Its goal is to find a generator of any principal ideal in the ring of algebraic integers in any number field. In this paper we give a polynomial time reduction from approximate shortest lattice vector problem for principal ideal lattices to their PIP’s in cyclotomic integer rings of extension degrees φ(n) = 2k−1, k = 2, 3, . . .. Thus if a polynomial time quantum algorithm for PIP of arbitrary number fields could be proposed, this would implies that approximate SVP problem for principal ideal lattices within a polynomial factor in this kind cyclotomic integer rings can be solved by a polynomial time quantum algorithm.
منابع مشابه
Polynomial time reduction from approximate shortest vector problem to the principle ideal porblem for lattices in cyclotomic rings
Many cryptographic schemes have been established based on the hardness of lattice problems. For the asymptotic efficiency, ideal lattices in the ring of cyclotomic integers are suggested to be used in most such schemes. On the other hand in computational algebraic number theory one of the main problem is called principle ideal problem (PIP). Its goal is to find a generators of any principle ide...
متن کاملRecovering Short Generators of Principal Ideals in Cyclotomic Rings
A handful of recent cryptographic proposals rely on the conjectured hardness of the following problem in the ring of integers of a cyclotomic number field: given a basis of a principal ideal that is guaranteed to have a “rather short” generator, find such a generator. Recently, Bernstein and Campbell-Groves-Shepherd sketched potential attacks against this problem; most notably, the latter autho...
متن کاملAdvances on quantum cryptanalysis of ideal lattices
knowledge, the same problems remain hard over arbitrary lattices, even with a quantum computer. More precisely, for certain sub-exponential approximation factors a, a-SVP on ideal lattices admit a polynomial-time algorithm, as depicted in Figure 1. In this survey, we give an overview of the techniques that have lead to these results. The first quantum attack on certain ideal lattices of cycloto...
متن کاملILTRU: An NTRU-Like Public Key Cryptosystem Over Ideal Lattices
In this paper we present a new NTRU-Like public key cryptosystem with security provably based on the worst case hardness of the approximate both Shortest Vector Problem (SVP) and Closest Vector Problem (CVP) in some structured lattices, called ideal lattices. We show how to modify the ETRU cryptosystem, an NTRU-Like public key cryptosystem based on the Eisenstein integers 3 [ ] where 3 is a...
متن کاملCreating a Challenge for Ideal Lattices
Lattice-based cryptography is one of the candidates in the area of post-quantum cryptography. Cryptographic schemes with security reductions to hard lattice problems (like the Shortest Vector Problem SVP) offer an alternative to recent number theory-based schemes. In order to guarantee asymptotic efficiency, most lattice-based schemes are instantiated using polynomial rings over integers. These...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015